Polarisation(s) in Labour Markets

Salle Laroque

Ministère des Solidarités et de la Santé

14, avenue Duquesne 75007 Paris International Conference • Polarisation(s) in Labour Markets International Conference • Polarisation(s) in Labour Markets International Conference • Polarisation(s) in Labour Markets International **Tuesday, June 19, 2018** Markets International Conference • Polarisation(s) in Labour Markets International Conference • Polarisation(s) in Labour Markets International Conference • Polarisation(s) in Labour Markets

International Trade and Job Polarization: Evidence at the Worker Level

Wolfgang Keller University of Colorado Hâle Utar Bielefeld University

19 June 2018, Paris

JOB POLARIZATION, DENMARK 1999-2009

Iowess

DISTILLING THE JP PATTERN

based on the median/mean wage paid in an occupation in 1999

High-Wage: Managers, Professionals, Technicians

- ★ Median wage 33 €
- \star 85 % of workers have higher than high-school ed.
- ★ covers 37 % of economy
- Mid-Wage: Clerks and Office Workers, Plant and Machine Operators, Craft and related trade workers
 - ★ Median wage 26 €
 - \star 62 % of workers have higher than high-school ed.
 - ★ covers 35 % of economy
- Occupations in Sales, Services, Mining, Construction, Transport, Manufacturing
 - ★ Median wage 23 €
 - \star 45 % of workers have higher than high-school ed.
 - ★ covers 28 % of economy

DISTILLING THE JP PATTERN

based on the median/mean wage paid in an occupation in 1999

High-Wage: Managers, Professionals, Technicians

- ★ Median wage 33 €
- * 85 % of workers have higher than high-school ed.
- ★ covers 37 % of economy
- Mid-Wage: Clerks and Office Workers, Plant and Machine Operators, Craft and related trade workers
 - ★ Median wage 26 €
 - ★ 62 % of workers have higher than high-school ed.
 - ★ covers 35 % of economy
- Occupations in Sales, Services, Mining, Construction, Transport, Manufacturing
 - ★ Median wage 23 €
 - ★ 45 % of workers have higher than high-school ed.
 - ★ covers 28 % of economy

Hale Utar w/ W. Keller Trade and Job Polarization

Changes in Employment Shares, 2000-2009

▶ jp

Hale Utar w/ W. Keller

Changes in Employment Shares, 2000-2009

▶ jp

Hale Utar w/ W. Keller

Changes in Employment Shares, 2000-2009

▶ jp

THE APPROACH

Low-wage Import Competition and Job Polarization

- Register-based matched employee-employer data from Denmark: workers, firms, trade
- Worker-level analysis, 1999-2009
 - Trade effect diffuses to entire economy
- The causal effect of import competition
 - Instrumental-variables estimation for entire economy
 - Quasi-experimental evidence: removal of import guotas for China

JOB POLARIZATION MEASURES

- Measures of job polarization at a worker-level during period of 2000-2009
 - Cumulative years of employment of worker i in high, medium and low wage occupations

$$HIGH_{i}^{e} = \sum_{t=2000}^{2009} Emp_{it}^{h}, \ MID_{i}^{e} = \sum_{t=2000}^{2009} Emp_{it}^{m}, \ LOW_{i}^{e} = \sum_{t=2000}^{2009} Emp_{it}^{l}$$

also w/ hours of work, and wages

Hale Utar w/ W. Keller

IDENTIFYING THE EFFECT OF IMPORT COMPETITION

Differential exposure of worker *i* via his/her six-digit product line,
 j, of 1999 employment

$$\mathbf{ImportComp_{j}} = \frac{M_{j,2009}^{CH} - M_{j,1999}^{CH}}{C_{j,1999}}$$

IPGraphSixDigit

 ΔM_j^{CH} Δ in imports originating from China $C_{j,1999}$ consumption in worker *i*'s six-digit product line (*j*) of employment in initial year, 1999

• IVs: China's export growth driven by internal supply shocks, falling global trade barriers (Hsieh and Ossa '16)

Hale Utar w/ W. Keller

ESTIMATION EQUATION

• Cumulative employment of worker *i* in mid-wage jobs over (2000-2009)

 Z_i^W $MID_i^e = \alpha_0 + \alpha_1 \mathbf{ImportComp_i} +$ $+ Z_i^F + Z_i^N$ $+\epsilon_i$ Sample IPGraph • Characteristics as of the initial year. 1999 Worker Z^W - $\mathsf{Product}/\mathsf{Service}$ Line Z^N age, gender, immigration status Firm Z^1 IT-capability (share of IT-educated workers) education level, hourly wage average hourly wage, skill-intensity (share of vocationally trained workers) the unemployment history, firm size, demand chars (energy, retail growth) labor market experience, separation rate pre-trends, 1993-1999 Union membership, UI membership Two-digit (NACE) industry FEs Two-digit Occupation (ISCO) FEs

Hale Utar w/ W. Keller

CAN TRADE EXPLAIN THE U-SHAPED PATTERN?

	$\operatorname{MID}^{\mathbf{e}}$	$\mathrm{HIGH^{e}}$	$\mathrm{LOW^{e}}$
Import Comp	-5.273**	2.307**	2.369**
	(2.282)	(1.075)	(1.178)
Demographic Characteristics	yes	yes	yes
Education Characteristics	yes	yes	yes
Hourly Wage	yes	yes	yes
Labor Market History	yes	yes	yes
Two-digit ISCO Occupation FE	yes	yes	yes
Union and UI Controls	yes	yes	yes
Firm Controls	yes	yes	yes
Product Characteristics	yes	yes	yes
Two-digit Industry FE	yes	yes	yes
Ν	900,329	900,329	900,329
F-test of excluding statistic	12.570	12.570	12.570
F-test of excluding statistic [p-value]	[0.000]	[0.000]	[0.000]

► FS

• Trade hollowed out the middle & pushed workers to both top and the bottom of the distribution, more or less equally!

Hale Utar w/ W. Keller

- Using these coefficients, import competition accounts for:
 - ► 17% of aggregate mid-wage employment decline 2000-2009
 - ▶ 9% of aggregate high-wage employment gains in 2000-2009

YEARLY IMPACT

▶ in response to 10% ★ in import comp in workers' product line of employment

Hale Utar w/ W. Keller

TRADE-INDUCED LOW-WAGE EMPLOYMENT AND UNEMPLOYMENT

13 / 26

Hale Utar w/ W. Keller

Trade and Job Polarization

TRADE-INDUCED LOW-WAGE EMPLOYMENT AND UNEMPLOYMENT

Hale Utar w/ W. Keller Trade

Why does trade cause JP?

- What is the channel?
- Does job reallocation due to import competition involves between sector movement?

Occupational shifts within vs between sectors

$$MID_{i}^{e} = \alpha_{0} + \alpha_{1} \text{ImportComp}_{j} + Z_{i}^{W} + Z_{i}^{F} + Z_{i}^{N} + \epsilon_{i}, \text{ Nobs} = 900, 329$$

$$\bullet \text{ Q-E} \qquad \bullet \text{ SecMove}$$

• Mid-Wage Employment (2000-2009): MID_i

Reg

OCCUPATIONAL SHIFTS WITHIN VS BETWEEN SECTORS

 $MID_{i}^{e} = \alpha_{0} + \alpha_{1} \text{ImportComp}_{j} + Z_{i}^{W} + Z_{i}^{F} + Z_{i}^{N} + \epsilon_{i}, \text{ Nobs} = 900, 329$ $\blacktriangleright \text{ Q-E}$

• Mid-Wage Employment (2000-2009): MID_i

OCCUPATIONAL SHIFTS WITHIN VS BETWEEN SECTORS

$$\begin{split} HIGH_{i}^{e} &= \alpha_{0} + \boldsymbol{\alpha_{1}} \textbf{ImportComp}_{j} + Z_{i}^{W} + Z_{i}^{F} + Z_{i}^{N} + \epsilon_{i}, \ Nobs = 900, 329 \\ & \blacktriangleright \textbf{Q-E} \end{split}$$

• High-Wage Employment (2000-2009): HIGH_i

Occupational shifts within vs between sectors

$$LOW_i^e = \alpha_0 + \alpha_1 \text{ImportComp}_{\mathbf{j}} + Z_i^W + Z_i^F + Z_i^N + \epsilon_i, \text{ Nobs} = 900, 329$$

$$\bullet \text{ Q-E}$$

• Low-Wage Employment (2000-2009): LOW_i

OCCUPATIONAL SHIFTS WITHIN VS BETWEEN SECTORS

 $LOW_i^e = \alpha_0 + \alpha_1 \text{ImportComp}_{\mathbf{j}} + Z_i^W + Z_i^F + Z_i^N + \epsilon_i, \text{ Nobs} = 900, 329$ $\bullet \text{ Q-E}$

Low-Wage Employment (2000-2009): LOW^e

QUASI-NATURAL EXPERIMENT

• Details removal of import quotas on China's textile goods (Multi-fiber arrangement quotas)

solid borders indicate statistical significance

Hale Utar w/ W. Keller

Trade and Job Polarization

21 / 26

ALTERNATIVE EXPLANATIONS

• How does import competition compare with Routine-biased **Technical Change** and **Offshoring**?

JP: Offshoring, RBTC, Import Competition

- Exposure to Import Competition versus Routine Task Intensity (RTI) and Offshorability of initial occupations
- Beta coefs, **bold** indicates statistical significance

Dep. Var.:	LOW^e	MID^{e}	$HIGH^e$
	(1)	(2)	(3)
Import Comp	0.027	-0.042	0.024
Offshoring	0.043	-0.022	-0.024
Tech Change	0.017	-0.041	0.041
Ν	809,791	809,791	809,791

TASK SPACE

• Our worker-task level interaction analysis shows:

Hale Utar w/ W. Keller

More Details

TASK SPACE

• Our worker-task level interaction analysis shows:

Hale Utar w/ W. Keller

Trade and Job Polarization

More Details

CONCLUDING REMARKS

- Import competition matters quantitatively
 - ★ Explains 17 % of decline in mid-wage jobs
 - \star Trade-induced sectoral shifts is a crucial mechanism
- Only trade (import competiton + offshoring) leads to increase in low-wage employment
- Only import competition leads to [↑] in both high- and low-wage employment
- Technology and import competition affect different parts of labor markets
 - ★ Trade impacts manual tasks (routine or not)

Hale Utar w/ W. Keller

MID-SKILL EDUCATION AND JOB POLARIZATION

- Vocational education is **common** in Europe
 - More education than high school, less than university degree
 Fig

• Vocational education perhaps a way to avoid job polarization ?

• More than a third of Danish workers vocationally trained

- Study encompasses about 3,000 different titles
 - * Manufacturing (e.g. welders, toolmakers), versus
 - * Services (e.g. pharmacy technicians, decorators)

• Among mid-skilled workers:

	HIGH ^e	$\underline{\mathrm{MID}^{\mathrm{e}}}$	$\overline{\mathrm{LOW^{e}}}$	
mport Comp	4.83	-12.02	4.11	
Manufacturing specific mport Comp* MVoc	vocational e 0.77	education (N 7.77	<mark>/Voc)</mark> -2.60	
nformation Technology specific vocational education (ITVoc)				
	22.05	-13.19	-4.21	
J	392,480	392,480	392,480	

- Manufacturing-specific vocational education shields workers from decline in labor demand in mid-wage jobs
- IT specific vocational education helps workers to gain high-wage jobs

Hale Utar w/ W. Keller

Data

• Among mid-skilled workers:

LOW^e HIGH^e MID^e Import Comp 4.83 -12.024.11 Manufacturing specific vocational education (MVoc) Import Comp* **MVoc** 0.77 7.77 -2.60Information Technology specific vocational education (ITVoc) Import Comp*ITVoc 22.05 -13.19-4.27 Ν 392.480 392.480 392.480

- Manufacturing-specific vocational education shields workers from decline in labor demand in mid-wage jobs
- IT specific vocational education helps workers to gain high-wage jobs

Hale Utar w/ W. Keller

• Among mid-skilled workers:

Data

	HIGH ^e	MID ^e	$\overline{\text{LOW}^{e}}$	
Import Comp	4.83	-12.02	4.11	
Manufacturing specific vocational education (MVoc)				
Import Comp* MVoc	0.77	7.77	-2.60	
Information Technology specific vocational education (ITVoc)				
Import Comp*ITVoc	22.05	-13.19	-4.27	
N	392,480	392,480	392,480	

- Manufacturing-specific vocational education shields workers from decline in labor demand in mid-wage jobs
- IT specific vocational education helps workers to gain high-wage jobs

Hale Utar w/ W. Keller

INEQUALITY AND IMPORT COMPETITION

- Natural measure of inequality: sum of earnings shares in high- and low-wage tails
 - Inequality is rising with the earnings share in the tails
- Earnings share of tails goes from 48% in year 1999 to 59.5% in year 2009
 - ► 11.5 percentage points increase
- 16% of this increase in inequality is explained by import competition
 - Based on our baseline estimation results (Table 3)
 - Most of it due to occupational change, not wage changes

UnEmp

DENMARK AND UNITED STATES

4 / 48

Return

HETEROGENEITY IN IMPORT PENETRATION

Share of Mid-wage Workers in 1999 × ω × œ. × × 2 × 0 .3 .2 Ó Change of Chinese Import Penetration Food Tobacco Textiles × Apparel Footwear Wood Paper Publishing O Petroleum + Chemicals + Plastics × Non-Metallic Mineral Products Iron and Steel Metal Products Machinery × Computers Electrical Equipment Electronics Measuring, Checking Eg. Motor Vehicles △ Transport Eq. × Furniture

Hale Utar w/ W. Keller

Return
LINE OF BUSINESSES AT SIX-DIGIT LEVEL

• 6-digit line of products:

- Manufacture of baby garments
- Manufacture of underwear
- Manufacture of condensed milk
- Manufacture of ice cream
- 6-digit line of businesses:
 - Retail at florists
 - Retail of pet animals
 - Work for coffee bars
 - Work for sex shops

Sectoral Distribution of Workers in 1999

 $\rm Figure:$ n=900,329 employed workers are all who were between 18 and 50 years old in 1999

Hale Utar w/ W. Keller

CHARACTERISTICS OF WORKERS IN 1999

Average Age	34
Female	34 %
Immigrant	4.5 %
College Educated	18 %
Vocational School Educated	44 %
At most a High School Diploma	38 %
Years of Experience in the Labor Market	13
Summation of past unemployment spells	1 year
Average Hourly Wage	27 €
High Wage Occupation	27 %
Mid Wage Occupation	51 %
Low Wage Occupation	19 %
Union Membership	76 %
Nobs	900,329

Hale Utar w/ W. Keller

▶ Hadi Gari Don Geri

Worker Characteristics in the Textile Sample

	All	Treated	Untreated
Number of Obs	10,487	5,015	5,472
Age	39.66	39.56	39.76
Immigrant	0.06	0.05	0.07
Experience	14.73	14.91	14.56
College	0.12	0.13	0.11
Vocational	0.35	0.35	0.35
Union Membership	0.82	0.84	0.80
UI Membership	0.91	0.92	0.90
Mid-Wage Occupations	0.66	0.63	0.69
Low-Wage Occupations	0.12	0.12	0.12
Machine Operators	0.38	0.37	0.39

Return

Hale Utar w/ W. Keller

JOB AND WAGE POLARIZATION, DENMARK 1999-2009

Hale Utar w/ W. Keller

VOCATIONAL EDUCATION AND MID-WAGE EMPLOYMENT

CHINA'S MFA IMPORT IN DENMARK

Hale Utar w/ W. Keller

Trade and Job Polarization

IDENTIFYING TRADE'S CAUSAL EFFECT

 $\begin{array}{l} {\rm TREATMENT} \mbox{ Workers employed by textile firms domestically producing} \\ & \underline{8\mbox{-digit CN}} \\ & \underline{8\mbox{-digit CN}} \\ & \underline{WTO} \mbox{ (in 1999)} \end{array}$

• continuous exposure: revenue share of domestically produced quota products in worker *i*'s firm in 1999

CONTROL Workers employed by textile firms **not** producing quota products before China's entry into the WTO (in 1999)

- Control for detailed pre-shock worker differences⇒ Workers differ only in their exposure to exogenous import shock
- Within industry across worker exposure to the trade shock takes out technology shocks, secular trends

Hale Utar w/ W. Keller

TREATMENT AND CONTROL GROUPS

	Treated Employed in T&C firms with domestic production of MFA goods as of 1999 Mean	Control Employed in other T&C firms as of 1999 Mean	Mean	t_test
Age	38.879	38.700	0.179	0.891
Experience [†]	14.713	14.156	0.557*	4.850
Negative Trend at Workplace	0.432	0.450	-0.019	-1.925
with College Education	0.128	0.102	0.025*	4.068
with Vocational Education	0.352	0.348	0.004	0.467
Machine Operator (ISCO 82)	0.349	0.350	-0.002	-0.167
Annual (Primary) Wage	214,967.9	215,047.3	-79.320	0.031
Total Annual Wages	228,866.2	228,930.3	-64.072	0.025
1996-1999 Average Annual Wage	203,869.6	204,145.8	-276.179	0.115

IMPORT SHOCK-REMOVAL OF MFA QUOTAS

- The Multi-fiber arrangement (MFA) regulated world trade in textile and clothing since 1974
 - ► at EU/EC level–Denmark not a major player
- The agreement on textile and clothing under WTO (1995)
 - ► Gradual phasing out: 1995, 1998, 2002, 2005
- By being outside of the WTO during the 1990s, China did not benefit from the first two phases of quota abolishment.
- WTO membership brought to China \to immediate removal of the first three phases of MFA quotas on China in January 2002

TRADE ADJUSTMENT-UTAR (2017)

• Sample Period: 1999-2010

 $\ln X_{it} = \alpha_0 + \frac{\alpha_1}{Trade_i} * Dum02_t + \delta_i + \tau_t + \epsilon_{it}$

	Exposure to
	TradeLib
Annual Salary	-0.051***
	(0.011)
Annual Total Labor Earnings	-0.043***
	(0.011)
Personal Income including unemployment insurance	-0.007
	(0.007)
Total Annual Hours Worked	-0.044***
	(0.007)
Hourly Wage	Ò.008 ́
	(0.004)
No of Days Worked Within a Year	-0.047 ^{***}
	(0.010)
Unemployment	0.106* [*] *
	(0.012)

Hale Utar w/ W. Keller

TRADE ADJUSTMENT-UTAR (2017)

Trade and Job Polarization

TRADE AND POLARIZATION QUASI-EXPERIMENT

Revenue share of domestically produced quota-protected products at worker i's firm in 1999

$$JP_{i}^{e} = \beta_{0} + \frac{\beta_{1}}{Trade_{i,99}} + Z_{i,99}^{W} + Z_{i,99}^{F} + \epsilon_{iT}$$
$$N = 10,487$$

	$HIGH^{e}$	MID^{e}	LOW^e
Trade	0.692**	-1.513**	0.746**
	(0.252)	(0.344)	(0.205)

- Qualitatively, the same result as economy-wide
- Quantitatively, import competition in textiles is stronger
 - reduction of 6 months of mid-wage employment
 - ▶ increase in high & low-wage employment, approx. 3 months each

SUSCEPTIBILITY OF JOBS TO POLARIZATION VARIES

• additionally controlling for **4-digit ISCO** fixed effects (more than 100 different occupations within the textile)

Buyers	Finance clerks	Fibre-preparing operators	Building caretakers
Accountants	Stock clerks	Weaving machine operators	Window cleaners
Bookkeepers	Silk-screen and craft textile printers	Sewing-machine operators	Sweepers
Data entry operators	Tailors	Bleaching machine operators	Doorkeepers
Secretaries	Textile pattern makers	Industrial robot operators	Etc

	$HIGH^{e}$	MID^{e}	LOW^e	JP^e	JP^{hours}	JP^{wage}
Trade	0.570*	-1.387**	0.796**	2.753**	3.432**	4.735**
	(0.239)	(0.373)	(0.201)	(0.541)	(0.657)	(0.777)

Hale Utar w/ W. Keller

CHINA'S IMPORT SHARE IN DANISH TEXTILES

China stood out in comparison to other countries facing the MFA quotas

Hale Utar w/ W. Keller

MFA QUOTAS

The quotas have varying degrees of coverage in terms of CN products.

 Quotas do NOT cover technologically or materially homogeneous group of products. e.g. Quota Non-Quota

Shawls and scarves of silk or silk waste Brasseries of all types of textile material Knotted netting of twine, cordage or rope

Shawls and scarves of wool and fine animal hair Corsellettes of all types of textile materials Twine, cordage, ropes and cables

CHINA'S IMPORT IN DENMARK

DISTRIBUTION OF WORKERS ACROSS OCCUPATIONS

 Histogram of Workers across Major Occupations in 1999 by trade exposure

Return

DISTRIBUTION OF WORKERS ACROSS OCCUPATIONS

 Histogram of Workers across Major Occupations in 2009 by trade exposure

Return

FALSIFICATION TEST

• Potential pre-trends? Sample Period: 1990-1999

$$\ln X_{it} = \delta_0 + \delta_1 A f f W_{i,99} * Dum 95_t + \delta_i + \tau_t + \epsilon_{it},$$
$$Dum 95_t = 1 \text{ if } t \ge 1995$$

	$AffW_{i,99}^{D} * Dum95_t$	$AffW_{i,99}^{C} * Dum95_t$
	$(\widehat{\delta_1})$	$(\widehat{\delta_1})$
Annual Earnings	0.017	0.073
	(0.013)	(0.045)
Total Annual Earnings	-0.004	-0.015
	(0.013)	(0.046)
Personal Income	0.001	-0.010
	(0.010)	(0.037)
Annual Hours Worked	0.012	0.038
	(0.008)	(0.027)
Hourly Wage	0.001	0.009
	(0.006)	(0.022)
Annual Unemployment	-0.052	-0.108
	(0.045)	(0.157)
		▶ Return

Hale Utar w/ W. Keller

TRADE-INDUCED UNEMPLOYMENT (UTAR 2017)

Hale Utar w/ W. Keller

Overall Destinations in 2009

Hale Utar w/ W. Keller

DANISH LABOR MARKET

• Flexible firing and hiring :

- ► Firms are not burdened by monetary compensation
- High level of publicly funded social protection and extensive ALMP
- ► Long-term unemployment rate was 13.5 % in 2008 (Germany 52.5 %, USA 10.6 %)

• Rigid Wages :

- ► High union density (72 % overall (2004), 76 % sample)
- ► Most wages are determined via the collective wage bargaining agreements (85 % in 2004)
- Denmark in the Global Competitiveness Report 2013
 - ▶ ranked 6th in flexibility in hiring and firing regulations (before the US),
 - ► ranked 93rd in flexibility of wage determination across 148 countries

EXPOSURE TO IMPORT COMPETITION AND TASKS

Return

• Tasks contents of occupations (O*NET) are interacted w/ imp comp

 $JP_i^e = \beta_0 + \beta_1 [\mathbb{TASK}_i \times \mathbf{Trade}_i] + \beta_2 Trade_i + \beta_3 X + \epsilon_i$

	Manual	Non-Manual/Cognitive
Routine	Spend time making repetitive motions Manual Dexterity	Evaluate info to determine compliance w/ standards
	Pace determined by speed of equipment	Importance of repeating same tasks
Non-Routine	Multi-limb coordination Response orientation	Inductive reasoning Developing objectives and strategies

EXPOSURE TO IMPORT COMPETITION AND TASKS

Return

 $\bullet\,$ Tasks contents of occupations (O*NET) are interacted w/ imp comp

	Manual	Non-Manual/Cognitive
Routine	Spend time making repetitive motions	Evaluate info to determine compliance w/ standards
	Manual Dexterity	
	Pace determined by speed of equipment	Importance of repeating same tasks
	Manual Dexterity Pace determined by speed of equipment	Importance of repeating tasks

 $JP_i^e = \beta_0 + \beta_1 [\mathbb{TASK}_i \times \mathbf{Trade}_i] + \beta_2 Trade_i + \beta_3 X + \epsilon_i$

Non-Routine	Multi-limb coordination	Inductive reasoning		
	Response orientation	Developing strategies	objectives	and

- Red: Relatively high polarization through import competition
- Green: Relatively low polarization via import competition Hale Utar w/ W. Keller Trade and Job Polarization

IMPORT COMPETITION AND TASKS

 $\bullet\,$ Tasks contents of occupations (O*NET) are interacted w/ imp comp

 $JP_i^e = \beta_0 + \beta_1 [\mathbb{TASK}_i \times \mathbf{Trade}_i] + \beta_2 Trade_i + \beta_3 X + \epsilon_i$

• Sign and significance of the import competition and the task content variable

	$\underline{MID^e}$	$\underline{JP^e}$
A. Trade and Routine Manual Tasks		
Spend time making repetitive motions	_	+
Pace Determined by Speed of Equipment	_	+
Manual Dexterity	_	+
B. Trade and Non-Routine Manual Tasks		
Multilimb Coordination	_	+
Gross Body Coordination	-	+

IMPORT COMPETITION AND TASKS

• Tasks contents of occupations (O*NET) are interacted w/ imp comp

 $JP_i^e = \beta_0 + \beta_1 [\mathbb{TASK}_i \times \mathbf{Trade}_i] + \beta_2 Trade_i + \beta_3 X + \epsilon_i$

 Sign and significance of the import competition and the task content variable

	$\underline{MID^{e}}$	$\underline{JP^e}$
A. Trade and Routine Manual Tasks		
Spend time making repetitive motions	_	+
Pace Determined by Speed of Equipment	-	+
Manual Dexterity	_	+
B. Trade and Non-Routine Manual Tasks		
Multilimb Coordination	_	+
Gross Body Coordination	_	+
C. Trade and Routine Cognitive Tasks		•
Evaluating Information to Determine Compliance with Standards	+	—
Importance of Repeating Same Tasks	+	—
D. Trade and Non-Routine Cognitive Tasks	•	
Mathematical Reasoning	+	_
Inductive Reasoning	∔	_
Developing Objectives and Strategies	+	-
Hale Utar w/ W. Keller Trade and Job Polarization		30 /

VOCATIONAL EDUCATION SYSTEM

- Follows a mandatory duration of nine years of schooling
- Tends to be between 2.5 and 5 years long
- Contains periods of formal schooling and apprenticeships
 - ► a metal worker with a vehicle body focus (Karrosserismed): requires four years of vocational training with six schooling periods
 - ➤ a metal worker specializing in alloy (Klejnsmed): takes a total of four and a half years including four longer schooling periods
 - a decorator
 - an orthopedic technician
 - IT assistant

Return

Hale Utar w/ W. Keller

VOCATIONAL EDUCATION AND MID-WAGE EMPLOYMENT

Return

Hale Utar w/ W. Keller

Trade and Job Polarization

32 / 48

EDUCATION AND JOB POLARIZATION

	$\underline{HIGH^e}$	$\underline{MID^{e}}$	$\underline{LOW^e}$
ΔIP^{CH}	2.82**	-4.38**	1.24
	(1.22)	(2.23)	(1.27)
$\Delta IP^{CH}*$ HighSchool	-2.91**	-0.58	1.74*
	(1.33)	(1.45)	(1.03)
$\Delta IP^{CH}*$ College	4.53**	-4.05	2.45*
	(2.29)	(3.27)	(1.33)
Ν	900,329	900,329	900,329

- Vocational education (itself) does not prevent trade-induced mid-wage losses
- High-school: one way for them-down

Hale Utar w/ W. Keller

VOCATIONAL EDUCATION AND JOB POLARIZATION

		$\underline{\mathrm{HIGH}^{\mathrm{e}}}$	$\overline{\text{MID}^{e}}$	$\underline{\mathbf{LOW^{e}}}$
٩	Manufacturing specific	vocational e	education (M	√oc)
	ΔIP_i^{CH}	2.43**	-5.98**	2.50**
	5	(1.10)	(2.34)	(1.22)
	ΔIP_i^{CH} * MVoc	-0.69	3.86**	-0.56
		(1.43)	(1.68)	(0.63)

VOCATIONAL EDUCATION AND JOB POLARIZATION

		$\underline{HIGH^{e}}$	$\overline{\text{MID}^{e}}$	$\overline{\text{LOW}^{e}}$
•	Manufacturing specifi	c vocational e	education (M	Voc)
	ΔIP_i^{CH}	2.43**	-5.98**	2.50**
	5	(1.10)	(2.34)	(1.22)
	ΔIP_i^{CH} * MVoc	-0.69	3.86**	-0.56
	.,	(1.43)	(1.68)	(0.63)
•	Services oriented voca	ational educat	ion (SVoc)	
	ΔIP_i^{CH}	1.88*	-5.13**	2.87**
	2	(1.09)	(2.26)	(1.20)
	$\Delta IP_i^{CH}*{f SVoc}$	2.11**	-1.00	-2.30*
	5	(0.99)	(1.23)	(1.25)

VOCATIONAL EDUCATION AND JOB POLARIZATION

		$\underline{\mathrm{HIGH}^{\mathrm{e}}}$	$\underline{\mathrm{MID}^{\mathbf{e}}}$	$\underline{\text{LOW}^{e}}$
٠	Manufacturing specifi	c vocational e	education (M	Voc)
	ΔIP_i^{CH}	2.43**	-5.98**	2.50**
		(1.10)	(2.34)	(1.22)
	ΔIP_{i}^{CH} * MVoc	-0.69	3.86**	-0.56
	.,	(1.43)	(1.68)	(0.63)
•	Services oriented voca	tional educat	ion (SVoc)	
	ΔIP_i^{CH}	1.88*	-5.13**	2.87**
		(1.09)	(2.26)	(1.20)
	$\Delta IP_{i}^{CH}*{f SVoc}$	2.11**	-1.00	-2.30*
	5	(0.99)	(1.23)	(1.25)
۰	Information Technolog	gy specific voo	cational educ	ation (ITVoc)
	ΔIP_i^{CH}	2.29**	-5.31**	2.42**
		(1.07)	(2.26)	(1.17)
	$\Delta IP_{i}^{CH}*$ ITVoc	8.04*	-3.69	-2.89**
		(4.31)	(3.68)	(1.37)

Hale Utar w/ W. Keller

Occupational shifts within VS between sectors

$$MID_{i}^{e} = \alpha_{0} + \alpha_{1}\Delta IP_{j}^{CH} + Z_{i}^{W} + Z_{i}^{F} + Z_{i}^{N} + \epsilon_{i}, \text{ Nobs} = 900, 329$$

$$\bullet \text{ Q-E} \qquad \bullet \text{ SecMove}$$

• Mid-Wage Employment (2000-2009): MID_i

	Total	Manufacturing	Service
$\Delta IP_{j}^{CH}(\widehat{\alpha_{1}})$	-5.273**	-6.946*	1.122
	(2.282)	(3.714)	(1.551)

OCCUPATIONAL SHIFTS WITHIN VS BETWEEN SECTORS

$$MID_{i}^{e} = \alpha_{0} + \alpha_{1}\Delta IP_{j}^{CH} + Z_{i}^{W} + Z_{i}^{F} + Z_{i}^{N} + \epsilon_{i}, \text{ Nobs} = 900, 329$$

$$\blacktriangleright \text{ Q-E} \qquad \blacktriangleright \text{ SecMove}$$

• Mid-Wage Employment (2000-2009): MID_i

	Total	Manufacturing	Service
$\Delta IP_{j}^{CH}(\widehat{\alpha_{1}})$	-5.273**	-6.946*	1.122
	(2.282)	(3.714)	(1.551)

• High-Wage Employment (2000-2009): HIGH_i

	Total	Manufacturing	Service
$\Delta IP_{j}^{CH}(\widehat{\alpha_{1}})$	2.307**	1.758	1.220
-	(1.075)	(1.977)	(1.756)

OCCUPATIONAL SHIFTS WITHIN VS BETWEEN SECTORS

$$MID_{i}^{e} = \alpha_{0} + \alpha_{1}\Delta IP_{j}^{CH} + Z_{i}^{W} + Z_{i}^{F} + Z_{i}^{N} + \epsilon_{i}, \text{ Nobs} = 900, 329$$

$$\bullet \text{ Q-E} \qquad \bullet \text{ SecMove}$$

• Mid-Wage Employment (2000-2009): \mathbf{MID}_{i}^{e}

	Total	Manufacturing	Service
$\Delta IP_{j}^{CH}(\widehat{\alpha_{1}})$	-5.273**	-6.946*	1.122
	(2.282)	(3.714)	(1.551)

• High-Wage Employment (2000-2009): HIGH^e_i

	Total	Manufacturing	Service
$\Delta IP_{j}^{CH}(\widehat{\alpha_{1}})$	2.307**	1.758	1.220
	(1.075)	(1.977)	(1.756)

• Low-Wage Employment (2000-2009): LOW^e_i

	Total	Manufacturing	Service
$\Delta IP_{j}^{CH}(\widehat{\alpha_{1}})$	2.369**	-2.031*	4.347**
	(1.178)	(1.071)	(1.348)

Hale Utar w/ W. Keller

Trade and Job Polarization
• High-Wage Jobs: *HIGH^e*

	Total	Manufacturing	Service
Competition	0.692**	-0.323	1.006**
	(0.252)	(0.249)	(0.200)

Return

Hale Utar w/ W. Keller

• High-Wage Jobs: *HIGH^e*

		Total	Manufacturing	Service
	Competition	0.692**	-0.323	1.006**
		(0.252)	(0.249)	(0.200)
N	lid-Wage Jobs:	MID^e		
		Total	Manufacturing	Service
	Competition	-1.513**	-1.943**	0.451**
		(0.344)	(0.393)	(0.189)

٥

• High-Wage Jobs: *HIGH^e*

		Total	Manufacturing	Service
	Competition	0.692**	-0.323	1.006**
		(0.252)	(0.249)	(0.200)
• N	lid-Wage Jobs:	MID^e		
		Total	Manufacturing	Service
	Competition	-1.513**	-1.943**	0.451**
		(0.344)	(0.393)	(0.189)
• Lo	ow-Wage Jobs:	LOW^e		
		Total	Manufacturing	Service
	Competition	0.746**	0.196	0.549**
		(0.205)	(0.128)	(0.163)

Hale Utar w/ W. Keller

• High-Wage Jobs: *HIGH*^e

		Total	Manufacturing	Service
	Competition	0.692**	-0.323	1.006**
		(0.252)	(0.249)	(0.200)
• M	id-Wage Jobs:	MID^e		
		Total	Manufacturing	Service
	Competition	-1.513**	-1.943**	0.451**
		(0.344)	(0.393)	(0.189)
• Lo	ow-Wage Jobs:	LOW^e		
		Total	Manufacturing	Service
	Competition	0.746**	0.196	0.549**
		(0.205)	(0.128)	(0.163)

• Gains in both of the tails due to trade involves manufacturing workers' movement to the service sector.

Hale Utar w/ W. Keller

Return

TRADE-INDUCED MOVEMENT TO SERVICES

Return

Hale Utar w/ W. Keller

Trade and Job Polarization

37 / 48

FIRST-STAGE COEFFICIENTS

First Stage Coefficients	
ΔHIP^{CH}	0.002**
	(0.001)
Log distance to import source	0.113*
	(0.068)
Share of retail firms in import	0.015**
	(0.005)

▶ Return

Hale Utar w/ W. Keller

JOB POLARIZATION AND WORKER CHARACTERISTICS

Dep. Var.	$HIGH^{e}$	MID^{e}	LOW^e
	(1)	(2)	(3)
$\Delta I P^{CH}$	2.307*	-5.273*	2.369*
	(1.075)	(2.282)	(1.178)
Female	-0.067	`0.109´	0.133*́
	(0.046)	(0.075)	(0.054)
Immigrant	-Ò.559**	-0.075°	0.025
0	(0.033)	(0.039)	(0.041)
Age	-Ò.036*´*	-Ò.021*´*	-0.001
0	(0.003)	(0.003)	(0.003)
College	1.682**	-0.407**	-0.248**
0	(0.058)	(0.065)	(0.040)
Vocational	Ò.131**	Ò.471**	`0.014´
	(0.029)	(0.068)	(0.049)
High School	0.104* [*]	0.175* [*]	Ò.070*́
5	(0.033)	(0.036)	(0.028)
Unemployment History	-Ò.118*´*	-Ò.134*´*	0.032**
	(0.008)	(0.011)	(0.006)
Log Hourly Wage	0.362**	-Ò.317*´*	-Ò.199*´*
	(0.070)	(0.047)	(0.072)
Union Membership	0.028	0.554**	0.154**
	(0.037)	(0.057)	(0.037)
UI Membership	-0.324**	0.503**	0.317**
	(0.093)	(0.032)	(0.065)
Experience	0.003	0.020	0.019
	(0.006)	(0.017)	(0.014)
Experience squared	0.001*	0.002**	-0.000
	(0.000)	(0.001)	(0.001)
Separation Rate	0.051	-0.719**	-0.047
	(0.047)	(0.063)	(0.052)
Log Firm Wage	0.658**	-0.000	-0.130*
	(0.084)	(0.095)	(0.065)
Firm Size	0.000**	-0.000**	0.000°
	(0.000)	(0.000)	(0.000)
I wo-digit Occupation Fixed Effects	V	V	√
I wo-digit Industry Fixed Effects	000,000	000,000	000,000
IN	900,329	900,329	900,329

Hale Utar w/ W. Keller

JOB AND WAGE POLARIZATION, DENMARK 1999-2009

Hale Utar w/ W. Keller

JOB POLARIZATION IS A RECENT PHENOMENON

Hale Utar w/ W. Keller

JOB POLARIZATION IS A RECENT PHENOMENON

Hale Utar w/ W. Keller

JOB POLARIZATION BY EDUCATION

Hale Utar w/ W. Keller

Trade and Job Polarization

43 / 48

TRANSITIONS FROM MID-WAGE OCCUPATIONS

- Sample: All 1999 mid-wage workers (N = 458,605)
- Dep. Var.Log Hourly Wage across different type of jobs

	$WAGE^{High}$	$WAGE^{Mid}$	$WAGE^{Low}$
ΔIP^{CH}	-0.006 (0.231)	-0.303 (0.220)	-0.350* (0.150)
Ν	112,514	407,188	107,888
▶ Return			

• Wage effects reinforces employment effect

JOB POLARIZATION WITHOUT ENTRY AND EXIT

• Employment share changes between 1999-2009 across ranked occupations among 1999 workers

Hale Utar w/ W. Keller

Trade and Job Polarization

Return

JOB POLARIZATION 1999-2009

Return

YEARLY IMPACT

• Cumulative Mid-wage employment

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
ΔIP_i^{CH}	-0.59*	-1.10**	-1.45*	-1.65*	-2.32**	-2.92**	-3.59**	-4.28**	-4.88**	-5.27**
5	(0.32)	(0.54)	(0.77)	(0.96)	(1.13)	(1.34)	(1.59)	(1.85)	(2.09)	(2.28)

• Cumulative High-wage employment

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
ΔIP_i^{CH}	0.25**	0.48**	0.70**	0.86**	1.13**	1.38**	1.67**	1.89**	2.11**	2.31**
J	(0.09)	(0.17)	(0.27)	(0.37)	(0.50)	(0.62)	(0.72)	(0.83)	(0.95)	(1.07)

Cumulative Low-wage employment

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
ΔIP_i^{CH}	0.06	0.084	0.23	0.40	0.53	0.86	1.13	1.55*	1.95*	2.37**
5	(0.15)	(0.29)	(0.40)	(0.50)	(0.58)	(0.68)	(0.81)	(0.94)	(1.06)	(1.18)

• Cumulative unemployment

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
ΔIP_i^{CH}	0.07	0.21**	0.35**	0.53**	0.75**	0.84**	0.93**	0.96**	0.95**	0.83*
5	(0.04)	(0.09)	(0.14)	(0.21)	(0.26)	(0.30)	(0.34)	(0.36)	(0.39)	(0.42)

Hale Utar w/ W. Keller

- imports to other high-income countries (Japan, Australia, New Zealand, USA, Finland, Germany, Netherlands, and Switzerland)
- retail market access measure
- measure of transportation costs

▶ Return